Foreword..1

1 Overview and Unit Outline..1
 1.1 Aim ..1
 1.2 Objective ..1

2 Contacts..2
 2.1 Academics..2
 2.2 Tutors ...2
 2.3 Student Representatives ...4

3 Unit Organisation...4
 3.1 Seminars...4
 3.2 Studios..4
 3.3 Unit Structure...4

4 Studio facilities ..6
 4.1 Access to Studios ...6
 4.2 Logon procedure ..6
 4.3 Printing services...6
 4.4 Technical Support ..6
 4.5 Equipment for loan ..6
 4.6 Disk space ..6

5 Guidelines for Project Work ..7
 5.1 Rationale for Project teams...7
 5.2 About Project Teams..8
 5.3 Team Meetings...8

6 Assessment...8
 6.1 Project Deliverables ...9
 6.2 Examination ...9
 6.3 Hurdle Requirements ...10

7 Standards..11
 7.1 Coding Standards...11
 7.2 Report Writing and Documentation...12
 7.3 System Modelling Standards ...12

8 Textbooks and Study Materials ...14

9 Appendix A – Resources ...16
 9.1 Reflective Journal Entry - Sample ...16
 9.2 Reflective Journal Entry -Template ...17
 9.3 Preparing your Project Plan ..18
 9.4 Weekly Team Project Plan -Sample ...20
 9.5 Weekly Team Project Plan -Template ..21
 9.6 Timesheet - Sample..22
 9.7 Timesheet -Template ...23
 9.8 Meeting Minutes -Sample ..24
 9.9 Meeting Minutes -Template ...25
 9.10 Peer Review / Project Team Contribution -Template26

10 Appendix B - Assessment Guides ...27

11 Appendix C - Assessment Notes ...29
Foreword
This unit guide has been designed and written to provide an overview of the requirements for IMS2000, Second Year Studio unit, a core unit in the Bachelor of Information Systems. More detailed coverage of the issues raised in the guide will be addressed during the studio classes and seminars organised for the unit. Groups are urged to carefully read the details contained in this guide and to raise issues in the studio class to the studio tutor or academic if anything is not understood.

1 Overview and Unit Outline
1.1 Aim
The principal focus of IMS2000 is to:
- integrate the knowledge gained from core first and second year subjects through application in a simulated information system development project and through specific targeted exercises.
- further enhance teamwork and system development skills further by participation in seminar and workshop activities.

The unit’s web site containing up-to-date information regarding this unit: http://www.sims.monash.edu.au/subjects/ims2000/ims2000.nsf

Students must visit this site regularly as all seminar presentations, studio activities and other information will be posted. Students will need to download all relevant material from the web each week before their studio.

1.2 Objective
At the completion of this unit the students will:

have knowledge of:
- the use of information systems modelling techniques to represent both functional requirements, design specifications and implementation artefacts

have an understanding of:
- the importance of understanding the client’s requirements and the capabilities of available technology so that an acceptable information system design can be produced

have the skills to:
- apply appropriate data gathering and modelling techniques to problem situations which are presented for analysis, interpret information systems requirements in the context of the prevailing political and organisational constraints, and produce modular and integrated design solutions
- to work cooperatively as a team member to achieve common and individual goals
have developed attitudes, which enable them to:

- respect the differing perspectives of all people with an interest in the information system being developed, work to the highest quality standards of which they are capable, in all cases adhere to the ethical standards required of a professional computing practitioner

Prerequisite knowledge:
Available to students enrolled in BIS or BIMS only – must have successfully completed IMS1000, and IMS1002
Co requisite units: IMS1401, IMS2112, BUS2176 (Semester 2)

2 Contacts
The following are the key people for support of the project work for IMS2000.

2.1 Academics

- **Angela Carbone** (Unit Leader)
 Room S4.02 (Level 4, Building S, - Caulfield Campus)
 Phone – 9903 1911
 Email – angela.carbone@infotech.monash.edu.au

- **Peter O'Donnell**
 Room S8.03 (Level 8, Building S, - Caulfield Campus)
 Phone – 9903 2502
 Email – peter.odonnell@infotech.monash.edu.au

- **Chris Gonsalvez**
 Room S7.22 (Level 7, Building S, - Caulfield Campus)
 Phone – 9903 2554
 Email – chris.gonsalvez@infotech.monash.edu.au

- **Rob Meredith**
 Room S8.04 (Level 8, Building S, - Caulfield Campus)
 Phone – 9903 2396
 Email – rob.meredith@infotech.monash.edu.au

- **Joze Kuzic**
 Room S4.12 (Level 4, Building S, - Caulfield Campus)
 Phone – 9903 2505
 Email – joze.kuzic@infotech.monash.edu.au

2.2 Tutors

Studio 1 Monday 2pm – 5pm
Anup Thimaya
Room T1.03 (Level 1, Building T, - Caulfield Campus)
Phone – 9903 2631
Email – anupthimaya@hotmail.com

Studio 2 Tuesday 9am – 12noon
Warren James
Room T1.03 (Level 1, Building T, - Caulfield Campus)
Phone – 9903 2631
Email – warrenj76@yahoo.com

Studio 3 Thursday 9am – 12pm
Anjali Biddanda
Room T1.03 (Level 1, Building T, - Caulfield Campus)
Phone – 9903 2631
Email – a_biddanda@hotmail.co

Studio 4 Thursday 1pm – 4pm
Natalia Tame
Room T1.03 (Level 1, Building T, - Caulfield Campus)
Phone – 9903 2631
Email – nat_wild@hotmail.com

Studio 5 Friday 10am – 1pm
Natalia Tame
Room T1.03 (Level 1, Building T, - Caulfield Campus)
Phone – 9903 2631
Email nat_wild@hotmail.com

Contacting staff:
Outside the scheduled class contact hours, you can contact teaching staff by email, phone, during their consultation hours (available on unit web page or at SIMS front desk) or by making an appointment. If you need a staff member urgently and are unable to contact them, please contact:

SIMS Front desk, Level 7 – Building S, Ph: 9903 2208.

Studio Manager
David Foott
Rm 7.18 Tower Building (S), Caulfield Campus
Phone 9903 1469
David.Foott@infotech.monash.edu.au
2.3 Student Representatives
Each studio class will have a female and male representative. The student representatives will be chosen in the first week of the studio sessions. The responsibilities of the student representatives will be to report back on issues that students feel staff need to address in order to improve the running of the studio. The student representatives will attend two BIS student-staff consultative committee meetings (one per semester) to raise any issues expressed to them by the IMS2000 studio team. The importance of having these meetings is also to provide feedback to the student representatives, regarding how the staff are addressing their concerns and issues in the coming semester.

3 Unit Organisation

3.1 Seminars
Seminars will be held on Wednesdays 1-2pm B218.

Students must attend the seminar series, as they will cover specific issues closely related to the development of a system for the case study. The seminars will also provide students with an opportunity to come together as a team and discuss their concerns. Seminar material is designed to directly support the yearly project-based activities and to provide skills and insights into personal development activities.

3.2 Studios
Studios will be held in T Block room 134.

Studios are 3 hours duration. It is expected that students will attend each studio class and contribute to their assigned team. It is a formal time set aside to meet with your tutor and studio academic. The studios provide students with a collaborative environment where they have the opportunity to explore and apply techniques introduced in the seminars.

3.3 Unit Structure
The weekly structure and content are subject to change depending on topic requirements and student needs. Materials, resources and readings are provided as required.

Workload:

This is a 12-point unit running over the whole year, which, according to University guidelines, requires you to spend 12 hours per week (a total of at least 156 hours per semester).

The anticipated workload is:

1 1 hours per week seminar
2 3 hour per week studio sessions
3 6 hours per week preparation and project work
4 2 hours per week reading
3.3.1 Semester 1 structure

<table>
<thead>
<tr>
<th>Week No</th>
<th>Date</th>
<th>Seminar</th>
<th>Studio</th>
<th>Assessment & Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 March</td>
<td>Introduction to IMS2000 Unit Objectives Administrative issues Case Study Demo IMS2000 Teaching Team</td>
<td>Administrative issues – access to studios, logon Finalise classes Explanation of Case Study, objectives</td>
<td>Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>2</td>
<td>8 March</td>
<td>Information needs and functional requirements analysis Rob Meredith / Chris Gonsalvez</td>
<td>Form Teams Team building activities Commence work on project</td>
<td>Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>3</td>
<td>15 March</td>
<td>Requirements Analysis Integration Standards Chris Gonsalvez</td>
<td>Project Mgt (presentation) Functional Analysis Use of modelling tools Continue project work</td>
<td>Initial Project Plan (hurdle) Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>4</td>
<td>22 March</td>
<td>Mapping the specification to the system Normalisation Chris Gonsalvez</td>
<td>Functional Specification presentation</td>
<td>Functional Specification [10%] Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>5</td>
<td>29 March</td>
<td>Data and Process Modelling for Modular design Prototyping in VB.NET Rob Meredith</td>
<td>Case study normalisation</td>
<td>Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>6</td>
<td>5 April</td>
<td>Visual Basic.NET in context Rob Meredith/ Peter O'Donnell</td>
<td>Project Mgt (presentation)</td>
<td>Design Specification [10%] Project Plan (hurdle) Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>7 – 16 April</td>
<td>9 – 16 April</td>
<td>Mid-Semester Break - Non-teaching period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>19 April</td>
<td>User Documentation Testing Angela Carbone</td>
<td>DS presentation (project plan presentation FRIDAY team)</td>
<td>Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>8</td>
<td>26 April</td>
<td>Visual Basic.Net/ Infrastructure + standards Peter O'Donnell</td>
<td>Test Plans</td>
<td>Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>11</td>
<td>17 May</td>
<td>Ethics Joze Kuzic</td>
<td>Finalising system and documentation Prepare for final system demos</td>
<td>Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>13</td>
<td>31 May</td>
<td>Review and Unit evaluation Examination issues Administrative issues What to expect in Sem 2 Angela Carbone</td>
<td>Organise Exam Interviews</td>
<td>Submission of project management documentation Reflective Journal (hurdle)</td>
</tr>
<tr>
<td>14</td>
<td>7 June</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 – 2 July</td>
<td>Exam Period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 - 16 July</td>
<td>Mid-Year Break</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3.2 Semester 2 Structure
To be advised.

4 Studio facilities

4.1 Access to Studios
Studios are accessible 24/7. Students will need their identification card to enter the studio, as it is secured with a card swipe facility and video camera.

Students not enrolled in a studio subject are not allowed in the studio rooms. It is expected that when studio classes are scheduled other students are not permitted to use this room. Food and drink are allowed in the studios but students are reminded to keep the studios clean.

4.2 Logon procedure
Students will log on in Studio via their standard Authcate network user access.

4.3 Printing services
Students will be required to buy credit for printing, to print using the standard printing arrangements for other printers in the Faculty. Printing output can be directed to the many printers the Faculty manages.

In K block, an A3 (B&W and Colour capable) printer will be part of the standard array of printers to which students can send output.

In the studios two new printers will be available: H-P A4 B&W units, with 3.5K sheet storage, and support duplex printing. Although at the present time the Studio does not support any photocopying facilities, there are scanners available for students to borrow so that printing can be achieved through scanning then printing.

4.4 Technical Support
Studio technical support from T Block will be available.

4.5 Equipment for loan
Students have access to the full range of resources that are available to all students at the University, plus the resources available to BIMS/BIS Studio students. These include rooms in the studio precinct - studio rooms, café, and meeting room. The Studio meeting room when required needs to be booked through SIMS reception via your Studio Academic.

Studio computer peripherals (cameras, scanners, laptops, zip drives etc.) are available for student use. This equipment is accessible via the Studio IT loan system - ask any of the SIMS technical staff for more information.

4.6 Disk space
Each project team has been allocated 500MB of shared hard disk space on the SIMS studio network, individual server space (10MB) and a small amount of space for preliminary project information on the SIMS Web server.
5 Guidelines for Project Work

5.1 Rationale for Project teams

The following sound educational rationale has been chosen for team work in IMS2000:

- The project-based nature of much of the work in IS and IM, and the crucial importance that IT graduates are able to demonstrate skills in effective teamwork when managing the complex interpersonal dynamics and conflicts that inevitably emerge in a project team.
- Specific focus areas are the development of skills in effective communication, running meetings, time management, negotiation, resolving conflict, achieving consensus, focusing team effort on the project task, managing expertise, developing mechanisms for ensuring that all members contribute appropriately, and produce a cohesive, well integrated/ effectcely synthesised team report.
- The potential, through the dynamic interplay of ideas in an effective team, to generate better solutions than can be produced by an individual working alone.

Given the nature of team work, mechanisms are in place for ensuring that student issues and concerns with a team assignment are identified early and addressed promptly. These include:

- Students recording minutes of team meetings which will be regularly checked by tutors.
- Students keeping a reflective journal on team process issues that are regularly reviewed by tutors.
- A timeslot being scheduled in selected studios throughout the semester for team progress reports.
- Procedures for managing risk in teams.

Furthermore, a strategy for allocating marks in a way that recognises the differential contributions of members within a team has been devised this includes:

- Use of team contribution/peer review forms.
- Interviews with individual students that explore their contributions to the team project.

Finally, procedures for managing risk in a team will include:

- In the first instance, teams must take responsibility for identifying and dealing with issues that threaten progress with their team task, eg confronting the non-performer.
- Irreconcilable issues within the team should be discussed with the tutor, and where no resolution is found, consult with the studio academic.
- After reasonable efforts have been made by the team to deal with performance issues, a final course of action should be the ability to expel the non-performing member from the team, or to split the team.
- Where a team member is expelled, or a team is split, the studio academic has an important counselling role with the team and the individual concerned, to clarify any consequent assessment requirements.
5.2 About Project Teams
The students are entirely responsible for the performance of the project in both technical and control terms. Each team will typically consist of three or four members. Teams will have no fewer than three members and no more than four members without the agreement of the Studio Academic. Each team must have a team leader to take on the responsibility for the smooth planning, scheduling and control of the project itself and the project team members.

5.3 Team Meetings
Team meetings will be conducted by each project team. Successful meetings rely on the active involvement of all team members, and are essential to your project’s success. All members need to take an interest and become familiar with all the tasks undertaken. Meetings also have a strong educative role, as through an understanding, and a greater knowledge of the project and its problems, team members will view their work more realistically. Such shared knowledge enables team members to approach other team members for assistance with their problems.

Team meetings and client interviews are the main vehicle to gather and disseminate information. The meeting process and subsequent deliverables are critical to the project’s success, and require thorough documenting. Indicators of the quality of meetings and interviews are:
- Preparation,
- Identification of issues,
- Follow up and resolution of issues,
- Documentation
- Clear links with project management.

6 Assessment
This unit is worth twelve points to the BIMS degree and is assessed over the whole year. The unit is primarily project-based and most assessment is based around the project.

The following weighting will be used to assess whether you have achieved the objectives of this unit over the year.

- 80% project deliverables
- 20% oral examination
6.1 Project Deliverables

Semester 1

<table>
<thead>
<tr>
<th>Deliverable</th>
<th>% value</th>
<th>Format</th>
<th>Week Due</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Specification</td>
<td>10%</td>
<td>Written document Team presentation to studio</td>
<td>4</td>
<td>22/3</td>
</tr>
<tr>
<td>Design specification</td>
<td>10%</td>
<td>Written Document Team presentation to user</td>
<td>6 & 7</td>
<td>5/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(presentations to be conducted week 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Documentation</td>
<td>5%</td>
<td>2 written documents (Drafts)</td>
<td>9</td>
<td>3/5</td>
</tr>
<tr>
<td>Test Plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working System</td>
<td>15%</td>
<td>[VB Code on disk/hardcopy]+ team demonstration</td>
<td>12</td>
<td>24/5</td>
</tr>
</tbody>
</table>

Refer to Appendix C – Assessment Note for further details regarding assignment work.

Semester 2

To be advised.

6.2 Examination

<table>
<thead>
<tr>
<th>Exam</th>
<th>% value</th>
<th>Format</th>
<th>Week</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual exam interviews</td>
<td>10%</td>
<td>Will cover aspects of: Project feasibility, Requirements Analysis/Functional Specification Design, Implementation, Documentation and Testing Reflective Journal</td>
<td>13 & 26</td>
<td>Each individual allocates 20min interviews with Studio Academic</td>
</tr>
</tbody>
</table>

Each student will need to book a time with their studio academic to present a 20 minute interview exam during week 13 for semester 1, and again in week 26 for semester 2. The exam will cover all aspects of the system development lifecycle; and will be examining the work covered in the studio that relates to the project. Students will be advised about the requirements during the semester.

At the completion of first semester, a student’s marks for either the project or exam components may indicate that they have not attained sufficient skill level and would be unlikely to pass the unit. If this is the case, the student will be counselled, and if it is considered that they will be unable to make up marks in second semester they will be offered the opportunity to withdraw from the unit before incurring further unnecessary costs.
6.3 Hurdle Requirements

The following hurdle requirements must be met. These are:

6.3.1 Reflective Journal Entries
Each student is required to keep a reflective journal which provides the opportunity to reflect on the learning that takes place throughout your studio project. Time will be allocated in each week's studio for students to prepare their journals. These will be read weekly by the tutors who will highlight any difficulties individuals or teams are facing to the studio academic. Only electronic entries will be accepted. The journal entries should include a reflection on what has happened in terms of the team’s progress and the management of the project and its tasks, what lessons were learnt and what would be done differently.

Journal entries will be submitted to the tutor and studio academic via email every week. The subject heading should be labelled "IMS2000 Journal Entry – Student ID". Difficult situations highlighted in the journals will be discussed as needed.

Refer Appendix 9.1, p.16 for a journal entry sample
Refer to Appendix 9.2, p.17 for a journal entry template

6.3.2 Project Management
Each team is required to maintain a project plan, which is updated regularly

To demonstrate effective project management skill you should submit the following documents:

- **Overall Project Plan**
 Overview of whole project in the form of a Gantt chart showing initial estimates of tasks and scheduling (Based on prescribed deliverable schedule). A Gantt chart should be maintained to provide an indication of the tasks to be undertaken, individuals involved, resource requirements, estimated and actual durations (as tasks are completed), and key milestones (ie. dates particular ‘deliverables’ are due).
 Refer to Appendix 9.3, p. 18 for information on preparing a project plan

- **Weekly Team Project Plan**
 A Weekly Team Project plan includes tracking of the project plan, assigned tasks, resources and deliverables on a weekly basis. The project plan needs to comprise of a weekly plan which includes: Student Name, Allocated Tasks, Associated deliverables, estimate of time spent working on the task during the week, actual time spent working on the task and reasons for any variation. Every three weeks the teams updated project plan (Gantt Chart) will be
presented to the studio. A different team member from the project will need to
give an informal presentation of what they have accomplished, difficulties
encountered and how they intend to proceed. Weekly project plans must be
completed in the studio each week as these will be monitored by the staff to
ensure the team is making adequate progress.

Refer to Appendix 9.4, p.20 for a weekly Team Project Plan - Sample
Refer to Appendix 9.4, p.20 for a weekly Team Project Plan – Template

- Individual Time Sheets
Each student is required to maintain weekly timesheet which will be used to
update the project plans and monitor the student effort.

Refer to Appendix 9.6, p.22 for a Weekly Timesheet - Sample
Refer to Appendix 9.7, p. 23 for a Weekly Timesheet - Template

- Attendance at Meetings and Meeting Minutes
Students are expected to have regular meetings with their team members. Each
team member is expected to contribute to the meetings and attend a minimum
of 10 meetings per semester. Each team is required to keep minutes of their
meetings.

Refer to Appendix 9.8 p.24 Minutes - Sample
Refer to Appendix 9.9 p.25 Minutes - Template

7 Standards
Each team is required to follow a set of standards. If standards are specified then
these should be followed otherwise the teams should devise an agreed set of standards
to adopt. These standards will cover ER modelling, VB coding, Report writing, etc.

7.1 Coding Standards
All code will be written using VB.Net. If teams are modifying or incorporating
additional functionality to a piece of software then the new code must adhere to the
standards set by the existing code. If teams are designing a new software package
then the team must follow an agreed standard. Coding standards will be covered in the
seminar series, and will cover variable naming conventions, code layout for legibility,
file naming conventions and more. Note: Code must contain inline documentation.

Visual Basic Resources -
URL:
http://msdn.microsoft.com/vbasic/community/webcasts/modern/
http://msdn.microsoft.com/vbasic/
http://msdn.microsoft.com/vbtv/
http://www.businessobjects.com/products/dev_zone/net/default.asp?ref=devzone_main
http://www.vbwm.com/
http://www.fawcette.com/vsm/
http://www.visualbasicforum.com/
7.2 Report Writing and Documentation

All written reports should follow a given standard or an agreed team standard. This means that templates and styles will need to be agreed upon and adhered to during the report writing tasks. Furthermore, all printed assignment work must be word-processed and meet any standards set out in the assignment.

Students can also refer to the School of Information Management and Systems Style Guide for additional information on presentation standards:

7.3 System Modelling Standards

7.3.1 ER Modelling - Notation

Entity

Entity

Entity

Entity

7.3.2 Data Flow Diagramming – Notation

Process:

Data Flow:

Data Store:

External Entity:
7.3.3 Data Dictionary Requirements

Data Flow Diagrams
For each process:
- A number
- A name
- A description - mini spec (Structured english, decision table, decision
 tree or just narrative)
- Could include input and output data flows

For each data flow:
- A name
- A description
- Alias
- Composition (list of the data elements)

For each data store:
- A name
- A description
- Alias
- Composition (list of the data elements)

For each external entity
- A name
- A description

For each data element
- A name
- Limitations X(20), etc...
- Validation rules

Entity Relationship Model
For each entity in the ER model
- A name
- A description
- Alias
- Composition (list of the data elements)

For composition:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>composed of the following</td>
</tr>
<tr>
<td>+</td>
<td>and</td>
</tr>
<tr>
<td>()</td>
<td>optional</td>
</tr>
<tr>
<td>{ }</td>
<td>repeating</td>
</tr>
<tr>
<td>[]</td>
<td>one of</td>
</tr>
</tbody>
</table>

Optional
- * = comments
- ___ = key

Example:

Student-Enrolment = Student-ID +
 {Semester +
 Year +
 Subject-code} +
 [Local
 International] +
 (Contact phone-no)
8 Textbooks and Study Materials

Texts and software:

Prescribed texts:

The prescribed texts for the core subjects will be used:

Recommended texts:

The following texts contain material that support the prescribed texts

Other references:

Further references and URL links will be indicated on subject web pages as they become apparent. Students are encouraged to engage in independent research to investigate similar systems in order to improve their understanding of the system under investigation.
Software:

Necessary software is provided in Studios but students will find it useful to have private access to software for word processing (MS Word), spreadsheet (MS Excel), database (MS Access), and a drawing tool (MS Visio, SmartDraw).

Study materials:

It is considered essential for all students to have the prescribed textbook as described above. The recommended texts will also prove useful and it is worth discussing with your tutor or lecturer as to which texts are also worth purchasing.

It is considered essential for all students to have the prescribed textbook as described above. The recommended texts will also prove useful and it is worth discussing with your tutor or lecturer as to which texts are also worth purchasing.

We provide:

- A Case Study document with assignment specifications and further clarification when necessary
- A list of required individual and team assessable deliverables
- Downloadable copies of weekly exercises supporting seminar topics and project objectives
- Downloadable copies of weekly seminar slides from the unit web site.
9 Appendix A – Resources

9.1 Reflective Journal Entry - Sample

INDIVIDUAL TASKS / ISSUES:
Learn Visual Basic, Find good resources
Yuk. I hate this. I feel really daunted doing this on my own. I have no idea where to start and I keep avoiding it, and now I’m beginning to feel that I am letting the team down. Need to speak to the team and the studio leader to get some suggestions.

TEAM TASKS / ISSUES:
Prepare team interface design standards - I expected this to be really easy and quick, but it was amazing how we differed so much in what we thought. After we came up with the initial standards, Janie suggested we each tried to develop one basic function using the standards. I thought that was going to be a real waste of time and was shocked at how much we had not thought about. It ended up being really useful and will probably saved us heaps of time in the long run. It would have been really irritating redeveloping all our screens so that they matched.

Organise meeting time and Team dynamics - I thought this would take 5 seconds, but it took us forever to find a time that we could all meet. I’ve really thought about this, and I am going to suggest to the team that we organise meeting times for the rest of the semester. If we don’t plan for this we are just never going to be able to all meet as a team, and just meeting in the studios is not enough. We are already behind and we are going to get even further behind. One of the team members is really quiet and we need help in getting her to speak up.

GENERAL COMMENTS:
I have found that it takes a lot of time to get a team working together cohesively, and you really need to control it well, and that a bit of time spent doing things like standards properly at the start can save you loads of time in the future. Also, a bit of forward planning is really useful, and you need all team members to participate if you want to succeed.
9.2 Reflective Journal Entry - Template

IMS2000 – Reflective Journal Entry

<table>
<thead>
<tr>
<th>Student Name: ___________________________</th>
<th>Student ID: ____________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studio: _____ Week: _____ Date: /__/</td>
<td></td>
</tr>
<tr>
<td>Team:____________________________________</td>
<td></td>
</tr>
</tbody>
</table>

INDIVIDUAL TASKS / ISSUES:

TEAM TASKS / ISSUES:

GENERAL COMMENTS:
9.3 Preparing your Project Plan

Project management is the process by which a proposed project is developed within a framework. Effective project planning will help to ensure that your system is delivered on time, within budget and to a specified standard.

Project scheduling is the process of managing the various activities that need to be undertaken during the development of your project. Scheduling starts in advance of the project commencing and involves:

- identifying the tasks that need to be carried out;
- estimating how long they will take given identified constraints;
- allocating resources (mainly personnel);
- scheduling when the tasks will occur.

Once the project is underway, your plan needs to be monitored and revised regularly to ensure that it continues to represent the best prediction of what will occur in the future, based on what actually occurs during the development.

Gantt chart

A Gantt chart is a horizontal bar chart developed as a production control tool in 1917 by Henry L. Gantt, an American engineer and social scientist. It is simple to understand and easy to construct, it is used by most project managers.

It allows you to:

- assess how long a project should take
- lay out the order in which tasks need to be carried out
- manage the dependencies between tasks
- determine the resources needed
- monitor progress
- see how remedial action may bring the project back on course

A Gantt chart is represented as a matrix. It is constructed with:

Time span – represented on the horizontal axis, broken down into the required increments (days, weeks, months or other time units).

Tasks – that make up the project represented on the vertical axis. Each row contains a single task identification, which usually consists of a number and name.

Task occurrence – Each task occurrence is represented by a horizontal bar connecting the period start and period ending columns. Tasks may run sequentially, in parallel or overlapping.

Variations include:
- a bar for each resource allocated to each task on a separate line
- shading of the bar to indicate actual start date and ongoing progress

Milestones/Deliverables – important checkpoints or interim goals for a project.
Dependencies – an essential concept that some activities are dependent on other activities being completed first.

Gantt Charts Example

Gantt charts may be simple versions created on graph paper or more complex automated versions created using project management applications such as Microsoft Project or Excel. Below is an example of a Gantt chart produced using MS Project.

For alternative Gantt Chart references visit:

- http://www.doc.mmu.ac.uk/online/SAD/T04/projman.htm
- http://ibis.nott.ac.uk/guidelines/ch8/chap8-D.html
- http://whatis.techtarget.com/definition/0,,sid9_gci331397,00.html
- http://www.doc.mmu.ac.uk/online/SAD/T04/projman.htm
IMS2000 – Weekly Team Project Plan

<table>
<thead>
<tr>
<th>Project Team/Team Name: Team A: Plan Exhibitions Team</th>
<th>Week No. and Week Start Date: Week 2, 23rd July, 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASK</td>
<td>RESOURCES</td>
</tr>
<tr>
<td>Team Meeting to prepare Project Plan</td>
<td>Team</td>
</tr>
<tr>
<td></td>
<td>Monday 10-12, Room A4.05</td>
</tr>
<tr>
<td>Start learning Visual Basic</td>
<td>Erin</td>
</tr>
<tr>
<td>Find good resources</td>
<td>Jeff</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Finalise Project ER Model</td>
<td>Team Rep. (Yee Wing)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare Prototyping Standards</td>
<td>Team</td>
</tr>
<tr>
<td>Saturday, 11-1, Jeff’s house</td>
<td></td>
</tr>
</tbody>
</table>

General Comments: Things are taking much longer than expected, may need to put more time into it.
9.5 Weekly Team Project Plan -Template

IMS2000 – Weekly Team Project Plan

<table>
<thead>
<tr>
<th>Task</th>
<th>Resources</th>
<th>Estimated Time</th>
<th>Actual Time</th>
<th>Completed</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Comments:
9.6 Timesheet - Sample

Name: Angela Smith
Studio Academic: Jo Blo
Studio Tutor: Hong Lim

<table>
<thead>
<tr>
<th>Date</th>
<th>Task Description – Describe what activity you have been working on.</th>
<th>Actual Hours Spent</th>
<th>Running Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fri 6 Feb 04</td>
<td>Reading case study and trying to understand the requirements</td>
<td>1 hr</td>
<td>1hr</td>
</tr>
<tr>
<td>Mon 1 Mar 04</td>
<td>Met up with project team to discuss the components and requirements of the task</td>
<td>1.5 hrs</td>
<td>2.5hrs</td>
</tr>
<tr>
<td>Wed 3 Mar</td>
<td>Started reading VB.Net Text (Programming in Visual Basic.NET by Zak) Appendix B database access using a windows form and Appendix C – database access using a windows form</td>
<td>2 hrs</td>
<td>4.5 hrs</td>
</tr>
<tr>
<td>Thu 4 Mar</td>
<td>Experimented with VB.NET and attempted to access a database using a windows forms</td>
<td>3 hrs</td>
<td>7.5 hrs</td>
</tr>
<tr>
<td>Fri 5 Mar</td>
<td>Experimented with VB.NET and attempted to access a database using a web forms</td>
<td>2 hrs</td>
<td>9.5hrs</td>
</tr>
</tbody>
</table>

REMINDER
The anticipated workload for IMS2000 is: 1 hr per week seminar, 3 hours per week studio sessions, 2 hrs per week reading, 6 hours per week preparation and project work
Timesheet -Template

Name

Studio Class
- Mon2.T134
- Tue9.T134
- Thu9.T134
- Thu1.T134
- Fri10.T134
(Circle your class)

Studio Academic

Studio Tutor

<table>
<thead>
<tr>
<th>Date</th>
<th>Task Description – Describe what activity you have been working on.</th>
<th>Actual Hours Spent</th>
<th>Running Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMINDER
The anticipated workload for IMS2000 is: 1 hr per week seminar, 3 hours per week studio sessions, 2 hrs per week reading, 6 hours per week preparation and project work
MINUTES
Ace Consulting Team

No: 13 – 3/7/2002
Location: Ann's place
Attending: Ann Miller, Valerie Soares, Tuck Le Ong.
Apologies: Brett – Car broke down.
Meeting started: 4.00 pm
Meeting closed: 5.20 pm

Confirmation of minutes: ______________________________

Minutes: Meeting No. 12—25/6/2002 confirmed.

Proceedings: Brett's status report read in his absence.
Ann has confirmed the introduction to the report done.
Val status report OK.
Tuck Le and Ann have drafted the context diagram.
Brett's work not done.

Concerns: The Team is disappointed with the lack of deliverables from Brett despite continued assurances that he would do his share of the work.
Furthermore, the Team is concerned that George has withdrawn from the subject without telling us, which generally shows a lack of regard for the position he has left us in.

Actions: Ann and Val to work on completing the draft report by Thursday.
Tuck Le to complete Level 0 .. and review with Val and Ann.
Brett to be contacted by Tuck Le regarding Team's concerns.
Tutor to be informed of our concerns regarding George.

Next Meeting: Tuck Le's place .. 8/7/02 10.00 am
Ann unable to come because of funeral. Val to bring all her stuff.
9.9 Meeting Minutes - Template

MINUTES

Name of Team

No:
Location:
Attending:
Apologies:
Meeting started:
Meeting closed:

Confirmation of minutes: ______________________________

Minutes:

Proceedings:

Concerns:

Actions:

Next Meeting:
9.10 Peer Review / Project Team Contribution -Template

IMS2000 – Studio Survey

Peer Review / Project Team Contribution

This must be handed in personally to your tutor along with every deliverable. Do NOT include as part of the team report.

Student name: _______________________________

Student number: _____________________________

Studio session: ______________________________

Please rate yourself and your project team members using the following scale:
1 – Excellent
2 – Good
3 – Fair/Average
4 – Poor
5 – Bad

<table>
<thead>
<tr>
<th>Student Name and ID</th>
<th>Attendance at meetings</th>
<th>Participation at meetings</th>
<th>Overall work contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prepared by IMS2000 Teaching Team
10 Appendix B - Assessment Guides

- Functional Specification Assessment Guide
 Report
 - Format, presentation standard and completeness of report
 - Clarity of writing
 - Appropriateness of each report section
 - Problem/solution identification descriptions

System Models
 Data Flow Diagrams
 - Completeness of data flow diagrams with respect to business functionality
 - Conformance to standard diagramming conventions and rules
 - Completeness of data dictionary entries
 - Consistency between levelled diagrams
 - Consistency between data dictionary entries and data flow diagrams

Entity Relationship Model
 - Completeness of entity relationship model with respect to new system functionality
 - Conformance to standard diagramming conventions and rules
 - Completeness of data dictionary entries
 - Consistency between data dictionary entries and entity relationship model

- Design Document Assessment Guide
 Database Design
 - Normalisation - steps done correctly, business rules followed
 - Data Structure Diagram - matches normalised entities
 - Business functionality - the database design meets the requirements of the business

Interface Design
 System Functionality
 - Only authorised access allowed
 - Standard functionality (editing, help, etc…)

 Business Functionality
 - All business requirements met

 Appearance – Consideration of interface design principles
 - Does it look good?
 - Appropriate use of space … not too cluttered
 - Appropriate fields teamed together
 - Good use of colour
 - Function buttons located appropriately
 - Message boxes located appropriately
 - Have standards been followed
Usability
- Usability .. is it easy to use?
- Does the dialogue flow easily through different aspects of the function?
- The use of Help, Exit, Clear Screen, Save, etc. should be consistent and obvious?
- Is repeat functionality (system or business) handled consistently?
 (eg. Is ‘duplicate handling’ done in a standard way?)

- **User Manual Assessment Guide**
 - Is the medium chosen appropriate
 - Target audience identified?
 - Has a consistent approach been used (wording, structure, layout)?
 - Does it follow good documentation standards?
 - Have the principles of good documentation development been followed
 - Useability – can I easily find what I'm looking for
 - Is all functionality explained?

- **Test Plans Assessment Guide**
 - Was a reasonable testing process followed
 - Was testing planned so that all requirements are met?
 - Are all tested items identified?
 - Was a testing schedule developed?
 - Documentation - were test results recorded
 - Were hardware and software requirements considered?
 - Were constraints – factors affecting the testing process documented?

- **Working System Assessment Guide**
 - Meets Information Requirements (As documented in Functional Specification)
 - User Interface (As documented in User Interface Specification)
 - Code is well laid out and readable (including appropriate comments)
 - System crashes gracefully (errors trapped and reported to the user appropriately)
 - Submission is virus free
11 Appendix C - Assessment Notes

Assessment Notes

1. Acknowledgment of sources

Each time you complete any assessment, please refer to and make yourself familiar with the most current information regarding acknowledgement of sources, plagiarism and academic conduct contained in the SIMS Policy website.

http://www.sims.monash.edu.au/policies

2. Assignments

2.1 Standards for presentation

All printed assignment work must be word processed and meet the standards set out in the assignment. Refer also to the School of Information Management and Systems guidelines for writing assignments for additional information on presentation standards:

2.2 Assignment Cover Sheets

All assignments must include an appropriate signed SIMS assignment cover page. See the SIMS web site for downloadable (PDF) copies of SIMS assignment cover pages

2.3 Extensions

If you believe that your assignment will be delayed because of circumstances beyond your control such as illness, you should apply for an extension prior to the due date. All applications for extensions must be made in writing to your lecturer. Medical certificates or other supporting documentation will be required.

Late assignments submitted without an approved extension may be accepted (up to one week late) at the discretion of your lecturer, but will be penalised at the rate of 10% of total assignment marks per day (including weekends). Example:

Total marks available for the assignment = 100 marks
Marks received for the assignment = 70 marks
Marks deducted for 2 days late submission (20% of 100) = 20 marks
Final mark received for assignment = 50 marks

2.4 Submission of assignments

Assignments should be handed to the tutor during the studio session on the due date. In the absence of other instructions, all assignments are to be submitted to your tutor during your allocated tutorial.

2.5 Return of assignments

Assignments will either be returned in specified tutorials during semester or via the SIMS Frontdesk collection system outside semester.

In general, assignments will be returned within two to three weeks of the due date.
3 Student Academic Grievance Procedure

If you have a concern or issue about aspects of your assessment or other academic matters, you are encouraged to follow the SIMS Student Academic Grievance Procedure: http://www.sims.monash.edu.au/policies

4. Pass requirements

The 40% rule applies to units and determines the final result for a student where the student's performance in either the examination or assignment component of the unit is unsatisfactory. Students need to be aware of the 40% rule which is:

In order to pass a unit, a student must gain all of the following:

- at least 40% of the marks available for the examination component: i.e. the final examination and any tests performed under exam conditions, taken as a whole
- at least 40% of the marks available for the assignment component: i.e. the assignments and any other assessment tasks (such as presentations) taken as a whole
- at least 50% of the total marks for the unit

Where a student gains less than 40% for either the examination or assignment component, the final result for the unit will be no greater than ‘44-N’.

This means that to pass this unit a student must obtain:

- at least 8 of the 20 marks available for the examination, and
- at least 32 of the 80 marks available for the deliverables, and also
- the total of these two marks must be 50% or greater

If a student obtains less than 40% of the available marks for either or both assessable components, the lower mark will apply.

For example:

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks Available</th>
<th>Marks Obtained</th>
<th>Final Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 20%</td>
<td>20</td>
<td>4</td>
<td>4N</td>
</tr>
<tr>
<td>Project 50%</td>
<td>80</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 30%</td>
<td>20</td>
<td>6</td>
<td>6N</td>
</tr>
<tr>
<td>Project 60%</td>
<td>80</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 60%</td>
<td>20</td>
<td>12</td>
<td>24N</td>
</tr>
<tr>
<td>Project 30%</td>
<td>80</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 40%</td>
<td>20</td>
<td>8</td>
<td>8 + 64 = 72D</td>
</tr>
<tr>
<td>Project 80%</td>
<td>80</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 80%</td>
<td>20</td>
<td>16</td>
<td>16 + 32 = 48N</td>
</tr>
<tr>
<td>Project 40%</td>
<td>80</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 60%</td>
<td>20</td>
<td>12</td>
<td>12 + 32 = 44N</td>
</tr>
<tr>
<td>Project 40%</td>
<td>80</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 40%</td>
<td>20</td>
<td>8</td>
<td>8 + 48 = 56P</td>
</tr>
<tr>
<td>Project 60%</td>
<td>80</td>
<td>48</td>
<td></td>
</tr>
</tbody>
</table>
5. **Grades**

The grades awarded by the Faculty of Information Technology are:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Code</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Distinction</td>
<td>HD</td>
<td>80-100</td>
</tr>
<tr>
<td>Distinction</td>
<td>D</td>
<td>70-79</td>
</tr>
<tr>
<td>Credit</td>
<td>C</td>
<td>60-69</td>
</tr>
<tr>
<td>Pass</td>
<td>P</td>
<td>50-59</td>
</tr>
<tr>
<td>Fail</td>
<td>N</td>
<td>0-49</td>
</tr>
<tr>
<td>Near Pass</td>
<td>NP</td>
<td>45-49 (may be awarded by Board of Examiners only)</td>
</tr>
<tr>
<td>Deferred</td>
<td>DEF</td>
<td>-</td>
</tr>
<tr>
<td>Withheld</td>
<td>WH</td>
<td>-</td>
</tr>
</tbody>
</table>