Introduction to Data Modelling: Entity Relationship Modelling

Data Modelling
- Focus on the information aspects of the organisation
- In a database environment many applications share the same data
- The database is a common asset and corporate resource
- Corporate and application level data modelling

Conceptual Data Modelling
- A conceptual data model is a representation of organisational data
- Captures the structure, meaning and interrelationships amongst the data
- Independent of any data storage and access method, DBMS, platform issues
- Occurs in parallel with other systems analysis activities

Conceptual Data Modelling
- Identification of information requirements
- Allows integration of data across the organisation and across applications
- Helps eliminate problems of data inconsistency and duplication across the organisation

Conceptual Data Modelling
- Techniques:
 - Entity Relationship (ER) modelling
 - Normalisation
 - Data Structure Diagrams (DSD)
- Good modelling techniques are supported by rigorous standards and conventions to remove ambiguity and aid understanding

Entity Relationship Modelling
- Used for conceptual data modelling
- Diagrammatic technique used to represent:
 - things of importance in an organisation - entities
 - the properties of those things - attributes
 - how they are related to each other - relationships
Entity relationship (ER) models can be readily transformed into a variety of technical architectures.

All information about the system's data identified during conceptual data modelling must be entered into the data dictionary or repository.

This assists in checking the consistency of data and process models.

Data "objects" or entities are things about which we wish to store information.

ER models show the major data objects and the associations between them.

ER models are useful in the initiation, analysis and design phases.

Entity Relationship Modelling

- Data "objects" or entities are things about which we wish to store information.
- ER models show the major data objects and the associations between them.
- ER models are useful in the initiation, analysis and design phases.

Entity Relationship Modelling

- Entity relationship (ER) models can be readily transformed into a variety of technical architectures.
- All information about the system’s data identified during conceptual data modelling must be entered into the data dictionary or repository.
- This assists in checking the consistency of data and process models.

Entity

- Something of interest about which we store information.
 - eg. EMPLOYEE
 - SALES ORDER
 - SUPPLIER
- Often identified from nouns used within the business application.
- Should be LOGICAL (not physical).

Identifying Entities

- Entities are subjective (i.e. they reflect the viewpoint of the system) and can be:
 - Real eg VEHICLE
 - Abstract eg QUOTA
 - Event remembered eg LOAN
 - Role played eg CUSTOMER
 - Organisation eg DEPARTMENT
 - Geographical eg LOCATION

Representing Entities

- We represent an entity by a named rectangle.
- Use a singular noun, or adjective + noun.
- Refer to one instance in naming convention.

Entity Types and Instances

- An entity type is a classification of entity instances.
 - eg BN Holdings
 - ABC Engineering
 - Acme Corp. Ltd.
 - SUPPLIER

CUSTOMER

PART-TIME EMPLOYEE
Entity Types are Logical

- E.g. in a sales and inventory system there might be 3 physical forms of data:
 - a stock file
 - product brochures sent to customers enquiring about products
 - a product range book used by salespeople when calling on customers to take orders

 which could be represented by one logical entity
 PRODUCT

Entity Types are Logical

- E.g. in a Student Records System there might be an entity type STUDENT which represents some of the data used in several physical forms of data:
 > Student re-enrolment forms
 > Subject class lists
 > Student results file

 The ER model identifies the minimum set of data objects necessary to construct the data used within the system in its various physical forms.

Relationship

- Is an association between two entities
- We may wish to store information about the association
- Often recognised by a verb or “entity” + verb + “entity”
 eg CUSTOMER places ORDER
- Relationships capture the “business rules” of the system

Representing Relationships

- We represent a relationship as a line between two entities
- The relationship is named by a meaningful verb phrase which should indicate the meaning of the association
- Relationships are bi-directional so naming each end of the relationship conveys more meaning

 SUPPLIER

 Item

 supersedes

 ITEM

Relationship Types and Instances

- A relationship type is a classification of relationship instances

 | Marketing | employs | Sue Black |
 | Finance | employs | Bill Brown |
 | MIS | employs | John Smith |

 DEPT

 employs

 EMPLOYEE

Cardinalities in Relationships

- The cardinality of a relationship is the number of instances of one entity type that may be associated with each instance of the other entity type
 eg a CUSTOMER may place many ORDERs
 an ORDER is placed by one CUSTOMER
 an ITEM can appear on many ORDERs
Examples of Cardinalities

<table>
<thead>
<tr>
<th>One to One</th>
<th>One to Many</th>
<th>Many to Many</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMPLOYEE</td>
<td>CUSTOMER</td>
<td>SUPPLIER</td>
</tr>
<tr>
<td>led by</td>
<td>placed by</td>
<td>supplied by</td>
</tr>
<tr>
<td>PROJECT</td>
<td>SALES ORDER</td>
<td>ITEM</td>
</tr>
<tr>
<td>leads</td>
<td>places</td>
<td>supplies</td>
</tr>
</tbody>
</table>

Nature of Relationships

We can indicate whether relationships are optional or mandatory:

- A customer MAY place many sales orders
- Each sales order MUST be placed by one customer

Notations

- EMPLOYEE
- COURSE

- EMPLOYEE
- ITEM

Notation used in Hoffer et al (1999)
Notation used in Whitten et al (2001)

Relationship Degree

- The degree of a relationship is the number of entity types that participate in the relationship.
- The most common relationships in ER modelling in practice are:
 - unary (degree one)
 - binary (degree two)
 - ternary (degree three)

Unary relationships

- A unary relationship is a relationship between instances of one entity type (also called a recursive relationship)
Binary relationships

- A binary relationship is a relationship between instances of two entity types and is the most common type of relationship encountered in practice.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Page of the movie                Copy of the video tape
has                               is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```

Ternary relationships

- A ternary relationship is a simultaneous relationship between instances of three entity types.
- A ternary relationship is NOT the same as three binary relationships between the same three entity types.

```
Movie                          Video tape
has copy                       is a copy of
```
Modelling Time-dependent Data

- Some data values vary over time and it may be important to store a history of data values to understand trends and for forecasting. E.g. for accounting purposes we are likely to need a history of costs of material and labour costs and the time period over which each cost was in effect.

- Modelling time-dependent data can result in changes to entities, attributes and relationships.

Modelling Time-dependent Data

- Relationship cardinality can change.

Entity subtypes and supertypes

- Some entities can be generalised (or specialised) to form other entities
- An entity subtype is made up from some of the instances of the entity
 E.g. the entity types: motor car, truck, train can be grouped together to form the entity supertype transport vehicle.
Entity Subtypes

Multiple entity subtypes should be
- Non-overlapping (disjoint)
- Collectively exhaustive
 This enables easier translation to a relational design

Building a Basic ER Model

- Identify and list the major entities in the system
- Represent the entities by named rectangles
- Identify, draw, name, and quantify relationships
- Indicate mandatory/optional nature of relationships
- Revise for entity subtypes where appropriate

Example ER model

- Airline ticketing model

Eliciting Information for an ER Model

- Fact-finding and information gathering techniques are used to determine the entities and relationships
- Identify both existing and new information
- Existing documents are particularly useful
 e.g. forms, paper-based and computer files, reports, listings, data manuals, data dictionary
- Existing and new business rules for information are often difficult to elicit from documents ...
 it is essential to speak directly to the client

ER Modelling Difficulties

- Is a given object an entity or relationship?
- Are two similar objects one entity or two?
- Is a given object an entity or an attribute of (data item about) an entity?
 e.g. EMPLOYEE and EMPLOYEE SPOUSE
- Do we need to store data about the object?
- What is the ‘best’ data model?

Quality dimensions

- Correctness
- Completeness
- Understandability
- Simplicity
- Flexibility
ER models and DFDs

- Do not confuse entities with sources/sinks or relationships with data flows.
- TREASURER is the person entering data; there is only one person and hence it is not an entity type.
- ACCOUNT has many account balance instances.
- EXPENSE has many expense transactions.
- EXPENSE REPORT contents are already in ACCOUNT and EXPENSE; it is not an entity type.

Integration of ER Models with DFDs

- All data elements represented in data flow diagrams for a system (data flows and data stores) **MUST** correspond to entities and their attributes in the ER model.

References

