The KMS Road Map

The first phase: evaluation of the infrastructure and aligning KM and business strategy.

The second phase: KM system analysis, design, and development.
- Knowledge audit and analysis
- Designing the KM team
- Creating the KM system blueprint
- Selecting KM technology
- Developing the KM system

The third phase: KMS deployment

The final phase: measuring ROI and performance evaluation

Amrit Tiwana, 2002
Nature of the KMS

- KMS is a socio-technical system defined in the interaction between the technology and the use of that technology
 - it is not a piece of software, it is a way of working
 - work is not where you go, it is what you do
- KMS is not a synonym for any ONE technology but requires an effective architecture and ICT infrastructure to acquire, create and deliver organisational knowledge to all constituencies
- Traditional IS, when concerned with the meaning not just information content, play a significant role in KM initiative
- KMS are designed and developed to give the users the knowledge they need to perform their tasks
 - KM tools are not necessarily computer-based but, when broadly defined, should enable knowledge generation, codification and transfer

(Gallupe, 2001)

Aims of KMS Development

- Leverage components already in place
- Integrate various systems by linking the outputs from one as inputs of the others
- Bring together work content and its context
 - support knowledge work
- Facilitate learning
- Ensure consistency in processes
- Adopt a user-centred approach to design
 - right knowledge to the right people in the right time
- Incorporate facilities for security and personalisation
 - authorisation (who wants it)
 - personalisation (what I need)
 - customisation (how I like it)
User Versus Knowledge Workers

<table>
<thead>
<tr>
<th>Attributes</th>
<th>User</th>
<th>Knowledge worker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependence on the system</td>
<td>High</td>
<td>Low to nil</td>
</tr>
<tr>
<td>Cooperation</td>
<td>Usually cooperative</td>
<td>Cooperation not required</td>
</tr>
<tr>
<td>Tolerance for ambiguity</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Knowledge of problem</td>
<td>Average/low</td>
<td>High</td>
</tr>
<tr>
<td>Contribution to system</td>
<td>Information</td>
<td>Knowledge/expertise</td>
</tr>
<tr>
<td>System user</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Availability for system builder</td>
<td>Readily available</td>
<td>Not readily available</td>
</tr>
</tbody>
</table>

Element of KMS Implementation

- Start with ‘high-value’ activity
- Focus on knowledge work
 - dynamic activity with high degree of discretionary judgement and expertise and potential for learning
- Scalability
 - start "quick and small" and progress to a full implementation by evolving the functionality and propagating the application
- Address culture, technology, organisational and work structure “simultaneously”
- Find a “champion” and an enthusiastic ‘guinea pig’
The Development Process

- Select the activity
- Acquire the knowledge
- Represent the knowledge in computable form
- Validate the knowledge base
- Refine the knowledge base
- Use the knowledge base
- Maintain the knowledge base
Life cycle for IS and KMS

Ph.1 - Project Definition
Ph.2 - Requirements Definition
Ph.3 - Logical Design
Ph.4 - Physical Design
Ph.5 - Testing
Ph.6 - Implementation
Ph.7 - Operation

SDLC

Ph.1 - Strategy
 Activity Definition
 Work practice study

Ph.2 - Development
 Audit, Architecture, Team

Ph.3 - Deployment
 Manage change and rewards structures

Ph.4 - Evaluation
 Value proposition
 Enhancement

KMDLC

Implementation

- Conceptualisation
- Formalization
 - Objects
 - Relationships
- Implementation
 - Integrating
 - Specialising
- Testing
 - Reasoning
 - Advice
 - Explanations
 - Interaction/Interface
Pilot Project

Characteristics of the pilot:

- Non trivial
- Stay away from the organisation’s lifeblood
- Aim at high visibility and noticeable impact
 - tangible outcomes according to clear measures set up in advance
 - process-intensive project is more likely to have a high impact and measurable outcome
- Start with an easy and suitable technology
- Project must last long enough for building a team and the synergy within the team

Tiwana, 2002

Prototyping

The usual approach for KMS development

- eliciting compiled knowledge requires an iterative development process
- a prototype is useful for testing ideas about representing the knowledge
- prototyping helps build up the knowledge engineer’s experience
- prototyping helps determine the scope of the final system
- a prototype is useful to gain management and user confidence and support
The information packaging methodology

- IPM implements incremental, spiral, evolutionary development model
- Comprises four inter-related steps:
 - Architecture planning
 - Design and analysis
 - Technology implementation (including pilot)
 - Deployment and metrics testing (includes user acceptance training and assessment)
- A new spiral starts with assessment of the level of strategic alignment of the system with current organizational directions
Methodological Caution

- An over reliance on methodology is bad.
- Methods are useful and can encourage a disciplined approach. They are not neutral since they embody some of the assumptions of their originator. This means that a particular methodology may have a limited use.
- Furthermore, the selection of a suitable project together with the consideration of human, organisational and social issues, can be critically important ... No methodology can give an insight into the salient features of a problem or a 'feel' for the environment.

A Spiral Model of System Development

(Boehm, 1988)
KMS Deployment

- What does this mean?
- How do you know it is working or not working?
- What factors to consider?
- What processes to introduce/change?
- How to take charge of change and not let the change take charge of you?
 - A road map: "current state – transition state - future state";
 - Pilot the transition state;
 - Identify supporters/opposition

(Ramizen, 2002)

KMS Deployment: What does it mean

- Implementing
 - Organisational (re)structure
 - Socio-cultural change
 - Technological tools and techniques
 - Revised work practices
 - Recalibrated reward systems

KMS deployment is about change management
The change management process: Unlearning & Relearning

- The change management process (Kurt Lewin & Edgar Schein)
 - Un-freezing
 - Establishing a need for change for those affected by the change.
 - Removing the threat/ perception of risk in the change.
 - Introducing a climate conducive to change.
 - Moving or Implementing
 - Training/ 'skilling' those affected by the change.
 - Fostering positive attitudes towards the change.
 - Re-freezing
 - Reinforcing and institutionalising the change
 - Re-establishing stability
 - Integrated the change into the organisation’s overall operations.
 - Diffusing the change throughout the organisation’s social system.

The Value Proposition of Deployment

- Gaining “competitive advantage”
- Need to consider:
 - Innovation
 - Core competencies
 - Absorptive capacity
 - Core capabilities (and rigidities)
 - Diffusion of Innovation
Innovation

- Innovation is how organisations generate new ideas and exploit them to develop marketable products or services. Innovation is:
 - an idea, practice or object perceived as new (Rogers 2003, p. 36).
 - the ability to build on previous knowledge and generate new knowledge
 - a willingness to try something totally new
 - a vital ingredient in organisational renewal and the creation of sustainable success Roos et al. (1997, p. 40)

- Innovation involves
 - understanding an existing body of knowledge
 - extending that knowledge through insight or fundamental rethinking of a given situation

Innovations that give companies a competitive edge occur bottom-up rather than top-down

Core Competence

- Core competencies involve sets of skills and technologies within an organisation that can be successfully mobilised for a rapid response to a perceived market need or opportunity.
- Core competencies are
 - the collective learning in the organization
 - a key factor in competitive advantage
 - closely linked to knowledge creation
 - Necessary for successful innovation (Prahalad and Hamel, 1990)

Organisations with defined core competence are able to mobilise resources rapidly to create knowledge and innovate
Absorptive Capacity

- Absorptive capacity is critical to an organisation’s innovative capabilities. It is an ability
 - to recognize the value of new knowledge
 - assimilate this knowledge
 - apply this knowledge to commercial ends

- Absorptive capacity is largely a function of the organisation’s prior level of knowledge
 - Organisations with existing knowledge and skill are in a better position to identify relevant new knowledge and to integrate it with current knowledge for innovations
 - Most innovations are derived from borrowing ideas rather than from fundamentally new interventions

Core Capabilities and Core Rigidities

- Core capability
 - focused on new product/process development
 - facilitate innovation
 - differentiates an organisation strategically through its superior technical and management systems and skills base
 - emphasises values and embedded social factors

- Rigidity is the tendency to stabilise. Core rigidity is
 - a strong forces against innovation
 - protecting the status quo
 - formalising processes and tasks and developing systems
 - privileging those processes and systems

- The dichotomy between capability and rigidity is analogous to the contradictions inherent in a learning culture: culture stabilises while learning is innovation
Diffusion of Innovations

- Diffusion pertains to 'a special type of communication concerned with the spread of messages that are perceived as new ideas.'

 (Rogers 2003, p.35).

Elements of Diffusion

- The “Innovation”
- Communication channels
- Time
- A social system

References

- Shauer, H. (2002) personal communication (SIMS seminar presentation)