At the completion of this lecture you should:

- be aware of the significance of maintenance activity in the work of an IS department
- be aware of the types of maintenance activity that IS departments may carry out and the role of each type
- be aware of the tasks involved in the maintenance of an information system

Lecture Objectives

Maintenance

- “Once the product has passed its acceptance test, it is handed over to the client. Any changes after the client has accepted the product constitute maintenance.”
 - Schach, 1993

- Maintenance can be up to 75% of IS department budget

Transition to Maintenance

- Need to develop systems that are more correct, cheap to operate, maintain and modify

System Costs to IS Department

- 50% of D.P. budget consumed by maintenance and enhancements
- Testing consumes about 50% of systems development costs

What is Maintenance

- Maintenance is NOT just bug-fixing!
- 4 types of maintenance
 - Corrective maintenance
 - Adaptive maintenance
 - Perfective maintenance
 - Preventative maintenance

Corrective Maintenance

- Corrects analysis, design and implementation errors
 - Most corrective problems arise soon after installation or after major system changes
 - Should have been isolated and corrected during development
 - Professional practice during development should minimise the need (but will not remove it completely)
 - Adds little or no value - focus on removing defects rather than adding anything new
 - Accounts for up to 75% of all maintenance activity
Corrective Maintenance

- Can be the most expensive kind of maintenance
 - costs of functions not working correctly
 - having to undo what has been developed
- Requires immediate attention
 - typically urgent, interfere with normal operations
- Needs skilled maintenance staff to ensure rapid diagnosis of errors and their correction
 - must have or quickly develop high level of familiarity with the system
 - software tools for diagnosis

Adaptive Maintenance

- To satisfy changes in the environment, changing business needs or new user requirements
 - changes in tax laws, takeovers and mergers, new OS, etc
 - new type of report, new class of customer etc.
- Less urgent - changes occur over time
- Adaptive maintenance is inevitable, does add value
- Maintenance staff need strong analysis and design skills as well as programming skills
 - changes often require a complete SDLC
 - also need good understanding of the system

Preventative Maintenance

- Pay now or pay more later
 - defects or potential problems found and corrected before they cause any damage
 - reduce chance of future system failure
 - eg expand number of records beyond needs, standardise formats across platforms
- A natural by-product of maintenance work - identify and fix any potential problems noted while fixing other errors

Perfective Maintenance

- To enhance performance, maintainability, usability
 - adds desired features rather than required
 - better run times, faster transaction processing
- To meet user requirements not previously recognised or given high priority
 - missed in development or not known about
 - considered unimportant

Perfective Maintenance

- Legacy systems (old systems running for at least 10 years) are likely candidates for perfective maintenance
- May involve technical systems specialists as well as general maintenance staff
 - network specialist to change network design for improved performance

version: Jan 97 updated by H. Smith
Topic: Maintenance

Distribution of Maintenance Effort

Costs of Maintenance

- There are many factors or cost elements affecting the ‘maintainability’ of a system
- Maintainability
 - the ease with which software can be understood, corrected, adapted and enhanced
- Low maintainability results in uncontrollable maintenance expenses

Cost Elements of Maintenance

- The following factors affect ‘maintainability’
 - Defects
 - Customers
 - Documentation
 - Personnel
 - Tools
 - Software structure
- Defects, customers and documentation have a significant effect on maintainability

Cost Elements of Maintenance

- Defects
 - the number of latent or unknown errors existing after system installation
 - influences most maintenance costs, drives all other cost factors
 - few errors -> low maintenance costs
- Customers
 - the number of customers/users of system
 - more customers, more maintenance effort/cost
 - greater need for high maintainability

Cost Elements of Maintenance

- Documentation
 - quality of system documentation
 - exponential effect on maintenance costs
- Personnel
 - quality of maintenance personnel
 - highly skilled programmers, typically not original programmers, to quickly understand and carefully change system
 - separate from development? in-house? dedicated end-user support?

Cost Elements of Maintenance

- Tools
 - appropriate automated development tools
 - programming tools, code generators, debuggers, hardware, CASE, diagnostics, etc
 - reverse engineering for no documentation
- Software structure
 - quality of software structure and maintainability
 - formalisation of code, comments, versioning
 - structure charts, OO

version: Jan 97 updated by H. Smith
There is a need to measure maintenance to understand quality of development/maintenance effort.

- We measure the following factors:
 - number of failures
 - time between each failure
 - type of failure

- Mean Time Between Failures (MTBF) is calculated using number of failures and time between each failure, widely used measure of quality.

Software Maintenance Life Cycle (SMLC):
- receive a Maintenance Request
- transform the Maintenance Request to a Change (analysis)
- specify the Change (design)
- develop the Change (code)

Overall goal is to manage change effectively:
- Organisations implement change management systems in an attempt to reduce the confusion and complexity of developing and maintaining systems.

The aims of change management systems are:
- restrict access to production source and object code
- reduce errors being introduced into production
- single version of source and object code in production
- improve quality and reliability of software
- increase security and control
- increase software productivity

Occasionally system failure is inevitable!
Topic: Maintenance

References
